ESA CCI SM RZSM Long-term Climate Data Record of Root-Zone Soil Moisture from merged multi-satellite observations
Description
This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). Project website: https://climate.esa.int/en/projects/soil-moisture/
This dataset contains information on the Root Zone Soil Moisture (RZSM) content derived from satellite observations in the microwave domain.
The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).
Abstract
Summary
- Global estimates of root-zone soil moisture from 01-1980 to 12-2024 at ~25 km spatial sampling based on the COMBINED product of ESA CCI SM v9.2.
- Method: Exponential filter model, calibrated with in situ measurements for 3 depth layers: 0-10, 10-40, 40-100 cm with uncertainty estimates. Additionally, one layer representing the average condition from 0-1 m depth is provided. See Pasik et al. (2023) for more details.
- Good agreement with independent reanalysis data (R ~0.6 [-] and ubRMSD <0.04 m³/m³), decreasing performance for deeper layers due to weaker coupling with surface SM.
Programmatic (bulk) download
You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.
#!/bin/bash
# Set download directory
DOWNLOAD_DIR=~/Downloads
base_url="https://researchdata.tuwien.at/records/tqrwj-t7r58/files"
# Loop through years 1980 to 2024 and download & extract data
for year in {1980..2024}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done
Data details
Filename template
The dataset provides global daily estimates for the 1980-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:
ESACCI-SOILMOISTURE-L3S-RZSMV-COMBINED-YYYYMMDD000000-fv09.2.nc
Data Variables
Each netCDF file contains 3 coordinate variables
- lon: longitude (WGS84), [-180,180] degree W/E
- lat: latitude (WGS84), [-90,90] degree N/S
- time: float, datetime encoded as "number of days since 1970-01-01 00:00:00 UTC"
and the following data variables
- rzsm_1: (float) Volumetric Root Zone Soil Moisture at 0-10 cm depth
- rzsm_2: (float) Volumetric Root Zone Soil Moisture at 10-40 cm depth
- rzsm_3: (float) Volumetric Root Zone Soil Moisture at 40-100 cm depth
- rzsm_1m: (float) Root Zone Soil Moisture at 0-1 m
- uncertainty_1: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
- uncertainty_2: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
- uncertainty_3: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
Additional information for each variable are given in the netCDF attributes.
Version Changelog
Changes in v9.2:
- The COMBINED product of v9.2 is used as input.
- The period was extended to 12-2024.
Software to open netCDF files
These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:
- Xarray (Python)
- netCDF4 (Python)
- esa_cci_sm (Python)
- Similar tools exist for other programming languages (Matlab, R, etc.)
- Software packages and GIS tools can open netCDF files, e.g. CDO, NCO, QGIS, ArcGIS
- You can also use the GUI software Panoply to view the contents of each file
Related Records
This record and all related records are part of the ESA CCI Soil Moisture science data records community.
Files
2024.zip
Files
(37.9 GiB)
| Name | Size | |
|---|---|---|
|
md5:9ec8205eb29ceec7e123891dddfe2f15
|
219.0 MiB | Preview Download |
|
md5:84855800409742fe21dac00cd637d16a
|
222.8 MiB | Preview Download |
|
md5:5d5986ea3268cc4c41a8e0cd68e0eec3
|
210.7 MiB | Preview Download |
|
md5:5e9f96133852b0b5b4a8faccaabfffaa
|
227.0 MiB | Preview Download |
|
md5:466c7263d5365a573c9920080077617f
|
207.5 MiB | Preview Download |
|
md5:0715542a3fbe7d9bdb946fe1b9042f4e
|
223.4 MiB | Preview Download |
|
md5:d8b80b90ddec7ed3aca718c304ffafb4
|
187.6 MiB | Preview Download |
|
md5:2df306adf2344a3eb957b430254f132d
|
453.3 MiB | Preview Download |
|
md5:13acf77066636dd1b02f3857ac524e2d
|
825.4 MiB | Preview Download |
|
md5:704339cbd4255df98cdd128dcf0ea87e
|
833.9 MiB | Preview Download |
|
md5:c29393f0ce3dce5a6882c98cd292b43a
|
795.1 MiB | Preview Download |
|
md5:eaf768970c0a06df551c26b2215a685e
|
600.3 MiB | Preview Download |
|
md5:4c927f2112955d6c9618aac261f1a037
|
859.6 MiB | Preview Download |
|
md5:9d3716d1261f764b4ea00cfe7aa9abca
|
898.4 MiB | Preview Download |
|
md5:d79814b55be5177b24a3c7dd75c19145
|
890.4 MiB | Preview Download |
|
md5:a14eebd80189eba410190de8804b6dff
|
924.3 MiB | Preview Download |
|
md5:e0948959b17bf47b0c70b45b2dc61242
|
922.8 MiB | Preview Download |
|
md5:211dd0580ac7e17aa1034fd23f6a1199
|
955.5 MiB | Preview Download |
|
md5:5a5f694b8caa1b803f40a67329773752
|
971.6 MiB | Preview Download |
|
md5:f29652e1bc3dd0217ba2419bb47e06d6
|
976.2 MiB | Preview Download |
|
md5:130910410b2df1bf67944441debca1ac
|
972.1 MiB | Preview Download |
|
md5:7376f1f3a9c631f3f3b337396c93ea64
|
958.7 MiB | Preview Download |
|
md5:81eea41b3d2330085c3d4d12f16f07e2
|
1.0 GiB | Preview Download |
|
md5:c73fb6e105a2889c2548ff2828a534d0
|
1.0 GiB | Preview Download |
|
md5:495958af12684e69b43189690336d419
|
1.0 GiB | Preview Download |
|
md5:37cd2d16bf016cc46b78d217bd3ea24f
|
1.0 GiB | Preview Download |
|
md5:48ca17bf10aef175da34f39dce1af217
|
1.0 GiB | Preview Download |
|
md5:a4c7672155e7b25d10b147f6c753d105
|
1.0 GiB | Preview Download |
|
md5:62acbcd0acd3ed1bf322bb350f180a6c
|
1.1 GiB | Preview Download |
|
md5:da87ae1fc954747635d35900910ddb44
|
1.1 GiB | Preview Download |
|
md5:6d96b0dc46366d8c143ea8efe9a0ef30
|
1.1 GiB | Preview Download |
|
md5:2206d3eb333f436bdd280f74c7a4dc9c
|
1.1 GiB | Preview Download |
|
md5:fcfa402d547371625b70e8e06294c415
|
1.1 GiB | Preview Download |
|
md5:08e67417bba8f46f5547285ff116f098
|
1.0 GiB | Preview Download |
|
md5:16408503ae1de007f7ab9b524908a876
|
1.0 GiB | Preview Download |
|
md5:625b8dca19caba7ed64d78d974c03023
|
1.0 GiB | Preview Download |
|
md5:e7181afe20f3d2c2cbd886dc3cbd120c
|
1.0 GiB | Preview Download |
|
md5:0d1c7b7e1b4b936929ddc448f7b44755
|
1.0 GiB | Preview Download |
|
md5:25b6cd8a19574731393bdd14a46ad337
|
1017.3 MiB | Preview Download |
|
md5:e3f275415387541b6d51c93e3bbcd757
|
1018.2 MiB | Preview Download |
|
md5:0b34d2604aeeb321a5a64b6532178e9c
|
1.1 GiB | Preview Download |
|
md5:861294a41ea102b86ce47106cd32bdde
|
1.1 GiB | Preview Download |
|
md5:937ef511c28921d99e05b1dbfcd2c6bf
|
1.1 GiB | Preview Download |
|
md5:c3cb948a2bb8cdf84c3d301ca24c183b
|
1.1 GiB | Preview Download |
|
md5:2afc048f3825c4ce191d8cbf72e4742d
|
1.1 GiB | Preview Download |
Additional details
Related works
- Is documented by
- Journal Article: 10.5194/gmd-16-4957-2023 (DOI)
- Is new version of
- Dataset: 10.48436/rvjsz-e8y12 (DOI)
Funding
- European Space Agency
References
- Pasik, A., Gruber, A., Preimesberger, W., De Santis, D., and Dorigo, W.: Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations, Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, 2023
- Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
- Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001.
- Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739, https://doi.org/10.5194/essd-11-717-2019
- Preimesberger, W., Scanlon, T., Su, C. -H., Gruber, A. and Dorigo, W. (2021). Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record, in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-2862, April 2021, doi: 10.1109/TGRS.2020.3012896.
- Wagner, W., Lemoine, G. and Rott, H., 1999. A method for estimating soil moisture from ERS Scatterometer and soil data. Remote Sensing of Environment, 70(2), pp.191–207. Available at: https://doi.org/10.1016/S0034-4257(99)00036-X