Published October 28, 2025 | Version 9.2
Dataset Open

ESA CCI SM RZSM Long-term Climate Data Record of Root-Zone Soil Moisture from merged multi-satellite observations

Description

This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture").  Project website: https://climate.esa.int/en/projects/soil-moisture/

This dataset contains information on the Root Zone Soil Moisture (RZSM) content derived from satellite observations in the microwave domain.

The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).

Abstract

Soil moisture is a key variable in monitoring climate and an important component of the hydrological, carbon, and energy cycles. Satellite products ameliorate the sparsity of field measurements but are inherently limited to observing the near-surface layer, while water available in the unobserved root-zone controls critical processes like plant water uptake and evapotranspiration. A variety of approaches exist for modelling root-zone soil moisture (RZSM), including approximating it from surface layer observations through an infiltration model (Pasik et al., 2023; Wagner et al., 1999, Albergel et al., 2008).
Here, we apply the method described by Pasik et al. (2023) to the COMBINED product of ESA CCI SM v9.2 to derive RZSM and uncertainty estimates in four depth layers of the soil (0-10, 10-40, 40-100, and 0-100 cm) over the period from January 1980 to December 2024 at ~25 km spatial sampling. In situ soil moisture measurements from the International Soil Moisture Network (Dorigo et al., 2021) were used for (global) T-parameter calibration and to quantify the (structural) model error component required to propagate surface measurement uncertainties to the root-zone layers. The 0-1 m layer is a (weighted) average of the other three layers. The dataset has been validated against ERA5 reanalysis RZSM fields, with global median correlations of ~0.6 [-] and ubRMSD <0.04 m³/m³.

Summary

  • Global estimates of root-zone soil moisture from 01-1980 to 12-2024 at ~25 km spatial sampling based on the COMBINED product of ESA CCI SM v9.2.
  • Method: Exponential filter model, calibrated with in situ measurements for 3 depth layers: 0-10, 10-40, 40-100 cm with uncertainty estimates. Additionally, one layer representing the average condition from 0-1 m depth is provided. See Pasik et al. (2023) for more details.
  • Good agreement with independent reanalysis data (R ~0.6 [-] and ubRMSD <0.04 m³/m³), decreasing performance for deeper layers due to weaker coupling with surface SM.

Programmatic (bulk) download

You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

#!/bin/bash

# Set download directory
DOWNLOAD_DIR=~/Downloads

base_url="https://researchdata.tuwien.at/records/tqrwj-t7r58/files"

# Loop through years 1980 to 2024 and download & extract data
for year in {1980..2024}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done

Data details

Filename template

The dataset provides global daily estimates for the 1980-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:

ESACCI-SOILMOISTURE-L3S-RZSMV-COMBINED-YYYYMMDD000000-fv09.2.nc

Data Variables

Each netCDF file contains 3 coordinate variables

  • lon: longitude (WGS84), [-180,180] degree W/E
  • lat: latitude (WGS84), [-90,90] degree N/S
  • time: float, datetime encoded as "number of days since 1970-01-01 00:00:00 UTC"

 and the following data variables

  • rzsm_1: (float) Volumetric Root Zone Soil Moisture at 0-10 cm depth
  • rzsm_2: (float) Volumetric Root Zone Soil Moisture at 10-40 cm depth
  • rzsm_3: (float) Volumetric Root Zone Soil Moisture at 40-100 cm depth
  • rzsm_1m: (float) Root Zone Soil Moisture at 0-1 m
  • uncertainty_1: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
  • uncertainty_2: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth
  • uncertainty_3: (float) Volumetric Root Zone Soil Moisture uncertainty at 0-10 cm depth

Additional information for each variable are given in the netCDF attributes.

Version Changelog

Changes in v9.2:

  • The COMBINED product of v9.2 is used as input.
  • The period was extended to 12-2024.

Software to open netCDF files

These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

  • Xarray (Python)
  • netCDF4 (Python)
  • esa_cci_sm (Python)
  • Similar tools exist for other programming languages (Matlab, R, etc.)
  • Software packages and GIS tools can open netCDF files, e.g. CDONCOQGIS, ArcGIS
  • You can also use the GUI software Panoply to view the contents of each file

Related Records

This record and all related records are part of the ESA CCI Soil Moisture science data records community.

Files

2024.zip

Files (37.9 GiB)

Name Size
md5:9ec8205eb29ceec7e123891dddfe2f15
219.0 MiB Preview Download
md5:84855800409742fe21dac00cd637d16a
222.8 MiB Preview Download
md5:5d5986ea3268cc4c41a8e0cd68e0eec3
210.7 MiB Preview Download
md5:5e9f96133852b0b5b4a8faccaabfffaa
227.0 MiB Preview Download
md5:466c7263d5365a573c9920080077617f
207.5 MiB Preview Download
md5:0715542a3fbe7d9bdb946fe1b9042f4e
223.4 MiB Preview Download
md5:d8b80b90ddec7ed3aca718c304ffafb4
187.6 MiB Preview Download
md5:2df306adf2344a3eb957b430254f132d
453.3 MiB Preview Download
md5:13acf77066636dd1b02f3857ac524e2d
825.4 MiB Preview Download
md5:704339cbd4255df98cdd128dcf0ea87e
833.9 MiB Preview Download
md5:c29393f0ce3dce5a6882c98cd292b43a
795.1 MiB Preview Download
md5:eaf768970c0a06df551c26b2215a685e
600.3 MiB Preview Download
md5:4c927f2112955d6c9618aac261f1a037
859.6 MiB Preview Download
md5:9d3716d1261f764b4ea00cfe7aa9abca
898.4 MiB Preview Download
md5:d79814b55be5177b24a3c7dd75c19145
890.4 MiB Preview Download
md5:a14eebd80189eba410190de8804b6dff
924.3 MiB Preview Download
md5:e0948959b17bf47b0c70b45b2dc61242
922.8 MiB Preview Download
md5:211dd0580ac7e17aa1034fd23f6a1199
955.5 MiB Preview Download
md5:5a5f694b8caa1b803f40a67329773752
971.6 MiB Preview Download
md5:f29652e1bc3dd0217ba2419bb47e06d6
976.2 MiB Preview Download
md5:130910410b2df1bf67944441debca1ac
972.1 MiB Preview Download
md5:7376f1f3a9c631f3f3b337396c93ea64
958.7 MiB Preview Download
md5:81eea41b3d2330085c3d4d12f16f07e2
1.0 GiB Preview Download
md5:c73fb6e105a2889c2548ff2828a534d0
1.0 GiB Preview Download
md5:495958af12684e69b43189690336d419
1.0 GiB Preview Download
md5:37cd2d16bf016cc46b78d217bd3ea24f
1.0 GiB Preview Download
md5:48ca17bf10aef175da34f39dce1af217
1.0 GiB Preview Download
md5:a4c7672155e7b25d10b147f6c753d105
1.0 GiB Preview Download
md5:62acbcd0acd3ed1bf322bb350f180a6c
1.1 GiB Preview Download
md5:da87ae1fc954747635d35900910ddb44
1.1 GiB Preview Download
md5:6d96b0dc46366d8c143ea8efe9a0ef30
1.1 GiB Preview Download
md5:2206d3eb333f436bdd280f74c7a4dc9c
1.1 GiB Preview Download
md5:fcfa402d547371625b70e8e06294c415
1.1 GiB Preview Download
md5:08e67417bba8f46f5547285ff116f098
1.0 GiB Preview Download
md5:16408503ae1de007f7ab9b524908a876
1.0 GiB Preview Download
md5:625b8dca19caba7ed64d78d974c03023
1.0 GiB Preview Download
md5:e7181afe20f3d2c2cbd886dc3cbd120c
1.0 GiB Preview Download
md5:0d1c7b7e1b4b936929ddc448f7b44755
1.0 GiB Preview Download
md5:25b6cd8a19574731393bdd14a46ad337
1017.3 MiB Preview Download
md5:e3f275415387541b6d51c93e3bbcd757
1018.2 MiB Preview Download
md5:0b34d2604aeeb321a5a64b6532178e9c
1.1 GiB Preview Download
md5:861294a41ea102b86ce47106cd32bdde
1.1 GiB Preview Download
md5:937ef511c28921d99e05b1dbfcd2c6bf
1.1 GiB Preview Download
md5:c3cb948a2bb8cdf84c3d301ca24c183b
1.1 GiB Preview Download
md5:2afc048f3825c4ce191d8cbf72e4742d
1.1 GiB Preview Download

Additional details

Related works

Is documented by
Journal Article: 10.5194/gmd-16-4957-2023 (DOI)
Is new version of
Dataset: 10.48436/rvjsz-e8y12 (DOI)

Funding

European Space Agency

References

  • Pasik, A., Gruber, A., Preimesberger, W., De Santis, D., and Dorigo, W.: Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations, Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, 2023
  • Albergel, C., Rüdiger, C., Pellarin, T., Calvet, J.-C., Fritz, N., Froissard, F., Suquia, D., Petitpa, A., Piguet, B., and Martin, E.: From near-surface to root-zone soil moisture using an exponential filter: an assessment of the method based on in-situ observations and model simulations, Hydrol. Earth Syst. Sci., 12, 1323–1337, https://doi.org/10.5194/hess-12-1323-2008, 2008.
  • Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001.
  • Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739, https://doi.org/10.5194/essd-11-717-2019
  • Preimesberger, W., Scanlon, T., Su,  C. -H., Gruber, A. and Dorigo, W. (2021). Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record, in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-2862, April 2021, doi: 10.1109/TGRS.2020.3012896.
  • Wagner, W., Lemoine, G. and Rott, H., 1999. A method for estimating soil moisture from ERS Scatterometer and soil data. Remote Sensing of Environment, 70(2), pp.191–207. Available at: https://doi.org/10.1016/S0034-4257(99)00036-X