We are currently working on a new workflow for the record publication reviews! 🕵️📑
Are you interested? Please try it on this test system and give us some feedback!

Published June 27, 2024 | Version 9.1
Dataset Open

ESA CCI SM RZSM Long-term Climate Record of Root-Zone Soil Moisture from merged multi-satellite observations

  • 1. ROR icon TU Wien

Contributors

  • 1. TU Wien

Description

Context and methodology

This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB" ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture"). 
It contains information on the Root-Zone Soil Moisture (RZSM) content at different depth layers as derived from Surface SM satellite observations of the ESA CCI SM products.
 
The RZSM estimates and relative uncertainties are derived using the method of Pasik et al. (2023) forced with observations of the ESA CCI SM Combined product (Dorigo et al., 2017; Gruber et al., 2019; Preimesberger et al., 2021).

Technical details

The dataset provides global daily estimates for the 1978-2023 period at 0.25° (~25 km) horizontal resolution. The compressed downloadable rzsm_v09.1_1978_2023.tar.gz file is structured in sub-directories each including all files for a specific year.
Each netCDF file contains the data of a specific day (DD), month (MM), and year (YYYY) in a 2-dimensional (longitude, latitude) grid system. The file name has the following convention:
ESA_CCI_RZSM-YYYYMMDD000000-fv0.9.1.nc
The RZSM data reflects the estimates calibrated for 4 depth layers:
  • rzsm1: 0-10 cm
  • rzsm2: 10-40 cm
  • rzsm3: 40-100 cm
  • rzsm4: 0-100 cm
A package is available in python for reading the data as daily images and converting these images to time series and reading them. The source code for our python package and installation instructions are available here: https://github.com/TUW-GEO/esa_cci_sm
Any software that can handle CF conform data should be able to import the raw netCDF files (e.g. CDONCOQGIS, ArCGIS, Matlab, R, ...). You can also use the GUI software Panoply to view each file.

Reference

Pasik, A., Gruber, A., Preimesberger, W., De Santis, D., and Dorigo, W.: Uncertainty estimation for a new exponential-filter-based long-term root-zone soil moisture dataset from Copernicus Climate Change Service (C3S) surface observations, Geosci. Model Dev., 16, 4957–4976, https://doi.org/10.5194/gmd-16-4957-2023, 2023

Additional citations

Dorigo, W.A., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, D. P. Hirschi, M., Ikonen, J., De Jeu, R. Kidd, R. Lahoz, W., Liu, Y.Y., Miralles, D., Lecomte, P. (2017). ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions. In Remote Sensing of Environment, 2017, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.07.001.

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., Dorigo, W. (2019). Evolution of the ESA CCI Soil Moisture Climate Data Records and their underlying merging methodology. Earth System Science Data 11, 717-739, https://doi.org/10.5194/essd-11-717-2019

Preimesberger, W., Scanlon, T., Su,  C. -H., Gruber, A. and Dorigo, W. (2021). Homogenization of Structural Breaks in the Global ESA CCI Soil Moisture Multisatellite Climate Data Record, in IEEE Transactions on Geoscience and Remote Sensing, vol. 59, no. 4, pp. 2845-2862, April 2021, doi: 10.1109/TGRS.2020.3012896.

Related Records

The following records are all part of the Soil Moisture Climate Data Records from satellites community

1

ESA CCI SM MODELFREE Surface Soil Moisture Record  

10.48436/rqfmp-jp420
2

ESA CCI SM GAPFILLED Surface Soil Moisture Record 

10.48436/hcm6n-t4m35

 

Files

1978.zip

Files (42.1 GiB)

Name Size
md5:5116e27933bd2c158d0656bc6e47a777
34.0 MiB Preview Download
md5:e98a9c1f8dc04336023e6cb27b29224a
215.4 MiB Preview Download
md5:6aee66938a2287feb27c56c3159d23b4
221.0 MiB Preview Download
md5:997772b6f55085f514dd0d3331db8d28
224.8 MiB Preview Download
md5:a1e92bb10d68e5b09c77d02930993388
212.6 MiB Preview Download
md5:75edcdc694bc0ba4eb279972e5033510
229.2 MiB Preview Download
md5:17fda69ca7f94651fdb51ab95e705e8b
209.4 MiB Preview Download
md5:de81aea64a65bb4f9f85743dadad514b
225.4 MiB Preview Download
md5:f401bfb2aee96ecf6d88d99517341d27
189.4 MiB Preview Download
md5:dea1e4297b67021d77a86956695f9415
496.0 MiB Preview Download
md5:43ba367bbc66988b9a6452df1d488566
927.1 MiB Preview Download
md5:d820f56c481975dfbb7f7a6a21482b9c
937.1 MiB Preview Download
md5:5fefab34fb613794638fd05f790e6a8d
893.6 MiB Preview Download
md5:9f963eb309633b49395b93a45c16446a
675.0 MiB Preview Download
md5:a08b4d88204344bc84b7a3e6a123467a
970.7 MiB Preview Download
md5:be488eaa0bcdffcd6acf1b6fd47355aa
1016.4 MiB Preview Download
md5:5b7b043abcfc8102934893cce844aeb6
1007.9 MiB Preview Download
md5:f08cd35828de50f6b3a8d911c7142462
1.0 GiB Preview Download
md5:afd625fa1e033dc4ed0ed0ee3f54d75f
1.0 GiB Preview Download
md5:d93f535548e38b6a37cf88bde9c77dc1
1.1 GiB Preview Download
md5:d2ec09d2532faf5b4e1a687726a104c1
1.1 GiB Preview Download
md5:78a1bfa1c6e70a2361eb4830a4fc1658
1.1 GiB Preview Download
md5:60887700c87c54ec4d5455784191b7b3
1.1 GiB Preview Download
md5:5f5ceeb996b68e7628ccfec2bcec6fae
1.1 GiB Preview Download
md5:2e258ac075199ce9b7ad989f02556db3
1.1 GiB Preview Download
md5:ce9bc7d790ac81f6c27120cacab0fdf7
1.1 GiB Preview Download
md5:d01d484cfab96a5cf8f3d2f22949c9e9
1.2 GiB Preview Download
md5:0fcc8c0380d533af26e623ae762a6513
1.2 GiB Preview Download
md5:d9c72e92e664d54d6728f364a7fabc9c
1.2 GiB Preview Download
md5:a5451ba5def8801dd5b73e6a46dc2122
1.2 GiB Preview Download
md5:2add80b108c3914d39425a61bf4d0a4a
1.2 GiB Preview Download
md5:cb6ebd65c8373360f8388998874bce91
1.2 GiB Preview Download
md5:64904f48d563d8f1bba28e378f11da4e
1.2 GiB Preview Download
md5:183aa6a25dc952653752813fcc5e58ea
1.2 GiB Preview Download
md5:35de0546dc03cbb7f9f8e3313c71d854
1.2 GiB Preview Download
md5:2804c2b77cd48049359d58f72e2d1fd5
1.2 GiB Preview Download
md5:d3e92fde6084cdd6b11171092ebd79b6
1.2 GiB Preview Download
md5:30a56c6e3452e79e379206d4f89bc0aa
1.2 GiB Preview Download
md5:845308e0e19c25d2c43a6065ead8823e
1.2 GiB Preview Download
md5:5a255fd2e5692e366a2aa6c7193b3558
1.2 GiB Preview Download
md5:c2f97775e36563cf2ac53bef98a2dda7
1.1 GiB Preview Download
md5:2a138880f766cf2ba4b5dbc59bc1343a
1.1 GiB Preview Download
md5:6f9d06d4c18f0c597270c9ff55dc10d3
1.2 GiB Preview Download
md5:fd60c5ab65cebb74f00a1634d19183ee
1.2 GiB Preview Download
md5:cce1ebc9dd6eecba4648a81dcacd20a7
1.2 GiB Preview Download
md5:1e2046425b3e10c2fd39838edb917290
1.2 GiB Preview Download