Published October 27, 2025 | Version 9.2
Dataset Open

ESA CCI SM FREEZE/THAW long-term Climate Data Record of surface conditions from merged multi-satellite observations

Description

This dataset was produced with funding from the European Space Agency (ESA) Climate Change Initiative (CCI) Plus Soil Moisture Project (CCN 3 to ESRIN Contract No: 4000126684/19/I-NB "ESA CCI+ Phase 1 New R&D on CCI ECVS Soil Moisture").  Project website: https://climate.esa.int/en/projects/soil-moisture/

This dataset contains information on the Surface Soil Moisture (SM) state derived from satellite observations in the microwave domain.

The operational (ACTIVE, PASSIVE, COMBINED) ESA CCI SM products are available at https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ 

Abstract

Understanding whether the soil surface is frozen or thawed is crucial for interpreting satellite-based soil moisture measurements and for many Earth system applications. The physical state of water in the soil strongly affects its dielectric properties, which in turn determine how satellites sense moisture content. Current ESA CCI Soil Moisture products exclude data when the surface is likely frozen, as reliable retrievals are not possible under such conditions. Yet, the freeze/thaw state itself carries valuable environmental information: it reflects the changing energy and water exchange between land and atmosphere, shapes seasonal hydrological cycles, and influences agriculture, ecosystems, and climate feedbacks across much of the Northern Hemisphere.

This dataset provides global estimates of the soil moisture freeze/thaw state for the period from 11-1978 to 12-2024 derived from PASSIVE (radiometer) satellite observations within the ESA CCI Soil Moisture framework. These radiometers, operating in the K-band frequency range, are sensitive to surface temperature, enabling the detection of frozen versus thawed conditions at daily temporal and ~25 km spatial sampling. Data from L-band missions (e.g., SMAP, SMOS) are not included, resulting in a total number of 12 satellites.

The classification algorithm, described in Van der Vliet et al. (2020), was originally developed to flag frozen conditions in soil moisture retrievals and has since evolved into a dedicated data product. It applies a decision-tree approach using multi-frequency satellite measurements to classify the surface state for each sensor. Individual classifications are then merged into a single spatiotemporal record using a conservative unanimity rule—if any contributing satellite detects a frozen surface, the merged product is classified as “frozen.”

While this approach ensures reliability, it may lead to some over-flagging, which could be refined in future versions. The current product achieves an estimated accuracy of 75% against in situ surface temperature observations and 92% compared to ERA5 reanalysis data.

Summary

  • Daily binary (true/false) freeze/thaw surface soil moisture state classification dataset (~25 km spatial sampling) for the period November 1978 to December 2024.
  • Based on a satellite brightness temperature (K-band) classification algorithm (Van der Vliet et al., 2020) from 12 satellite radiometers.
  • A pixel is classified as "frozen" if it was classified accordingly for at least one satellite. This can lead to potential over-flagging in the current version.
  •  Approximately 75% agreement with in situ surface temperature measurements (Dorigo et al., 2021) and 92% with ERA5-Land reanalysis temperature fields (Muñoz-Sabater et al., 2021)

Programmatic (bulk) download

You can use command-line tools such as wget or curl to download (and extract) data for multiple years. The following command will download and extract the complete data set to the local directory ~/Download on Linux or macOS systems.

#!/bin/bash

# Set download directory
DOWNLOAD_DIR=~/Downloads

base_url="https://researchdata.tuwien.at/records/m3g2x-a6958/files"

# Loop through years 1978 to 2024 and download & extract data
for year in {1978..2024}; do
echo "Downloading $year.zip..."
wget -q -P "$DOWNLOAD_DIR" "$base_url/$year.zip"
unzip -o "$DOWNLOAD_DIR/$year.zip" -d $DOWNLOAD_DIR
rm "$DOWNLOAD_DIR/$year.zip"
done

Data details

Filename template

The dataset provides global daily estimates for the 1978-2024 period at 0.25° (~25 km) horizontal grid resolution. Daily images are grouped by year (YYYY), each subdirectory containing one netCDF image file for a specific day (DD) and month (MM) of that year in a 2-dimensional (longitude, latitude) grid system (CRS: WGS84). The file name follows the convention:

ESACCI-SOILMOISTURE-L3S-FT-YYYYMMDD000000-fv09.2.nc

Data Variables

Each netCDF file contains 3 coordinate variables

  • lon: longitude (WGS84), [-180,180] degree W/E
  • lat: latitude (WGS84), [-90,90] degree N/S
  • time: datetime, encoded as "number of days since 1970-01-01 00:00:00 UTC"

 and the following data variables

  • ft: (int) Soil moisture freeze-thaw state binary indicator (0=not frozen, 1=frozen, -1=missing data)
  • ft_agreement (float): Classification agreement between available sensors. 1 means that the frozen/unfrozen classification was the same for all merged sensors. The number decreases as the classification results between available satellites contradict.
  • sensor_count (int): Total number of merged sensors/overpasses
  • sensor_count_frozen (int): Total number of measuring sensors/overpasses that detected frozen soils
  • mode: (int) Indicator for satellite orbit(s) used in the retrieval (1=ascending, 2=descending, 3=both, 0=missing data)
  • sensor: (int) Indicator for satellite sensor(s) used in the retrieval. For more details, see netcdf attributes.

Additional information for each variable is given in the netCDF attributes.

Version Changelog

Changes in v9.2 (first released version):

  • This version uses the classification algorithm described by Van der Vliet et al. (2020) applied to 12 sensors and a unanimous merging approach. Covers the period from 11-1978 to 12-2024.

Software to open netCDF files

These data can be read by any software that supports Climate and Forecast (CF) conform metadata standards for netCDF files, such as:

  • Xarray (Python)
  • netCDF4 (Python)
  • esa_cci_sm (Python)
  • Similar tools exist for other programming languages (Matlab, R, etc.)
  • Software packages and GIS tools can open netCDF files, e.g. CDONCOQGIS, ArcGIS
  • You can also use the GUI software Panoply to view the contents of each file

References

Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar Bader, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J. P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., and Sabia, R.: The International Soil Moisture Network: serving Earth system science for over a decade, Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, 2021.
 
van der Vliet, M.; van der Schalie, R.; Rodriguez-Fernandez, N.; Colliander, A.; de Jeu, R.; Preimesberger, W.; Scanlon, T.; Dorigo, W. Reconciling Flagging Strategies for Multi-Sensor Satellite Soil Moisture Climate Data Records. Remote Sens. 2020, 12, 3439. https://doi.org/10.3390/rs12203439
 
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Related Records

This record and all related records are part of the ESA CCI Soil Moisture science data records community.

Files

1978.zip

Files (4.8 GiB)

Name Size
md5:b524f72cbd8663988d87ad2d10145780
8.9 MiB Preview Download
md5:928deeb65f7e558e9e5c5333bf826c4d
48.6 MiB Preview Download
md5:5325320588b07a85d629fae5e4ee071f
48.2 MiB Preview Download
md5:f97cd71a2aeb70618a657cbec5680c5b
49.7 MiB Preview Download
md5:ba58a66f90e7705ac1bcd65f83a71749
48.7 MiB Preview Download
md5:c8ebf764b1301cf52ec1baf5ce64c7ca
50.7 MiB Preview Download
md5:81e6ffda6ebe5be87fd5fb77b4bc7a00
49.4 MiB Preview Download
md5:11841d7f3902c520135099bc9bf1beea
47.4 MiB Preview Download
md5:9a498c445c894e7c4f1d94014415bc7d
44.4 MiB Preview Download
md5:2ebd99c5f6d9cadacd0588affaea1ea3
58.1 MiB Preview Download
md5:fb8b096c4a890ede6a4f747cccf58565
81.3 MiB Preview Download
md5:1f0441406f083161d58bc164176bb7b4
83.0 MiB Preview Download
md5:b577912a2e7e7e59d2ec5e586d72034a
78.1 MiB Preview Download
md5:e6343c25df40104692c0518d424368df
70.0 MiB Preview Download
md5:2ab5bf9d4e891d1de8f9c464137c2f2c
92.2 MiB Preview Download
md5:e45a0a35019e9ee513dcc6808f9421d5
97.7 MiB Preview Download
md5:fb211c0b3d7c19eeeb8a90f1a96a3629
94.9 MiB Preview Download
md5:33105e43b3bb95db3ff0ec1f21b5f4d3
96.7 MiB Preview Download
md5:e56dfb14736ba07e002287680c606f76
99.8 MiB Preview Download
md5:8fc5254225cafda86179229e7c97e3bf
104.8 MiB Preview Download
md5:d3300758f5cd89010130ddc65bc51f9a
120.1 MiB Preview Download
md5:6598239c835eb712a8054a505f0b0e89
120.0 MiB Preview Download
md5:0b74cee5a30d2d3119d5269fdf203aa2
120.6 MiB Preview Download
md5:a66c585f97f06c4ea0199b65d2523223
107.8 MiB Preview Download
md5:7fdfbe4132cc2e0101736403b2501b48
121.0 MiB Preview Download
md5:d2b26a042308c0874b0c9f309a152035
119.4 MiB Preview Download
md5:549be33df5d297a1f1229b1b5c3a1861
122.5 MiB Preview Download
md5:a49a2b626e1ee628c2bc6f33f8d982f1
118.4 MiB Preview Download
md5:064073ca2ad72af651c67faa4a583d79
123.0 MiB Preview Download
md5:173c2cadc1e62f1c022c89e9346fb6d0
137.5 MiB Preview Download
md5:07b6123577af91611c3937a97ec14de6
135.0 MiB Preview Download
md5:b3d085f76bad009d9eefb1a9427dc333
113.3 MiB Preview Download
md5:35499199afabeb47ad18a763df8115fd
111.0 MiB Preview Download
md5:cddad7520828e3d48d4eaae5f278bccd
137.1 MiB Preview Download
md5:91be157014ea942ed66a83eddd0406e7
128.8 MiB Preview Download
md5:6850bea3f00aca36aa2ab00dbb81059f
132.4 MiB Preview Download
md5:682bd8e786c73617d6b2291bd1cf168f
161.2 MiB Preview Download
md5:0962db1644df94abba918543ce7c647d
159.0 MiB Preview Download
md5:03408d446e5c331de3ca629242fdbccf
164.0 MiB Preview Download
md5:14edcf7f01111081500783854f3e1561
165.0 MiB Preview Download
md5:bc8600bf73236056af4713d211458c5f
165.4 MiB Preview Download
md5:2a3894f501396e12d5a2962f0a78acc4
163.9 MiB Preview Download
md5:034a7d3d8b82360fb8bfca16ab45c69f
133.4 MiB Preview Download
md5:e86972f7246625b24b6afb2d956b76cd
132.3 MiB Preview Download
md5:19cf301902eaa2e43c527a0aec9c3825
133.6 MiB Preview Download
md5:4953374ef9ed2a2fceb5bf0204049877
127.4 MiB Preview Download
md5:aab6a1520d6304912a7075c39d58ab36
111.1 MiB Preview Download

Additional details

Related works

Is documented by
Journal Article: 10.3390/rs12203439 (DOI)
Journal Article: 10.1016/j.rse.2017.07.001 (DOI)
Is part of
Dataset: https://catalogue.ceda.ac.uk/uuid/c256fcfeef24460ca6eb14bf0fe09572/ (URL)

Funding

European Space Agency

References

  • van der Vliet, M., van der Schalie, R., Rodriguez-Fernandez, N., Colliander, A., de Jeu, R., Preimesberger, W., Scanlon, T., & Dorigo, W. (2020). Reconciling flagging strategies for multi-sensor satellite soil moisture climate data records. Remote Sensing, 12, 3439. https://doi.org/10.3390/rs12203439
  • Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J.-C., Camarero, J. J., Capello, G., Choi, M., Cosh, M. C., van de Giesen, N., Hajdu, I., Ikonen, J., Jensen, K. H., Kanniah, K. D., de Kat, I., Kirchengast, G., Kumar Rai, P., Kyrouac, J., Larson, K., Liu, S., Loew, A., Moghaddam, M., Martínez Fernández, J., Mattar, C., Morbidelli, R., Musial, J. P., Osenga, E., Palecki, M. A., Pellarin, T., Petropoulos, G. P., Pfeil, I., Powers, J., Robock, A., Rüdiger, C., Rummel, U., Strobel, M., Su, Z., Sullivan, R., Tagesson, T., Varlagin, A., Vreugdenhil, M., Walker, J., Wen, J., Wenger, F., Wigneron, J.-P., Woods, M., Yang, K., Zeng, Y., Zhang, X., Zreda, M., Dietrich, S., Gruber, A., van Oevelen, P., Wagner, W., Scipal, K., Drusch, M., & Sabia, R. (2021). The International Soil Moisture Network: serving Earth system science for over a decade. Hydrology and Earth System Sciences, 25, 5749–5804. https://doi.org/10.5194/hess-25-5749-2021
  • Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G., Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E., Hamer, P.D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., Lahoz, W., Liu, Y.Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw, N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R., Seneviratne, S.I., Smolander, T. and Lecomte, P., 2017. ESA CCI Soil Moisture for improved Earth system understanding: State-of-the-art and future directions. Remote Sensing of Environment, 203, pp.185–215. Available at: https://doi.org/10.1016/j.rse.2017.07.001